# Difusor lineal microtobera Serie DUS



Detalle microtobera



Toberas orientables individualmente



Ejecución lineal con tramos intermedios y extremos



## **Difusor lineal microtobera**

Difusor lineal microtobera especialmente diseñado para su montaje en techo o pared con una consideración estética especial, tales como: oficinas abiertas, laboratorios, bibliotecas, escuelas, etc.

- Orientación individual de toberas 360°
- Posibilidad de ejecución en una, dos, tres o cuatro filas de toberas
- Adecuados para sistemas de caudal de aire constante VAC y caudal de aire variable VAV (caudal mínimo 25% del caudal máximo)
- Diferencias de temperaturas en impulsión: -12K a +10K

01/2016 - ES **TROX**® TECHNIK S/DUS - 1

| Serie |                                                 | Página |
|-------|-------------------------------------------------|--------|
| DUS   | Información general                             | 2      |
|       | Dimensiones (Toberas dispuestas en 1 y 2 filas) | 3      |
|       | Dimensiones (Toberas dispuestas en 3 y 4 filas) | 4      |
|       | Dimensiones · Ejecuciones                       | 5      |
|       | Información de montaje · Definiciones           | 6      |
|       | Datos técnicos                                  | 7      |
|       | Información para pedido                         | 8      |

## Ejemplo de instalación



Sede Seguros AEGÓN, Madrid Disposición de 3 filas de toberas en paralelo

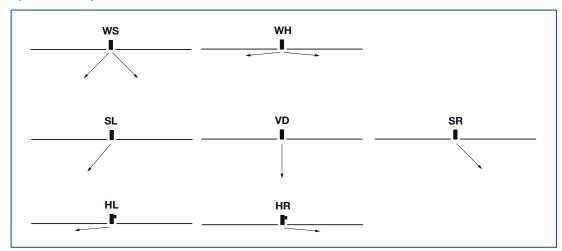


Restaurante Bodegas IRIUS, Barbastro (Huesca) Toberas dispuestas en 1 fila

## **Variantes**



Modelo estándar


Toberas dispuestas en paralelo con marco (F, W)



Modelo especial

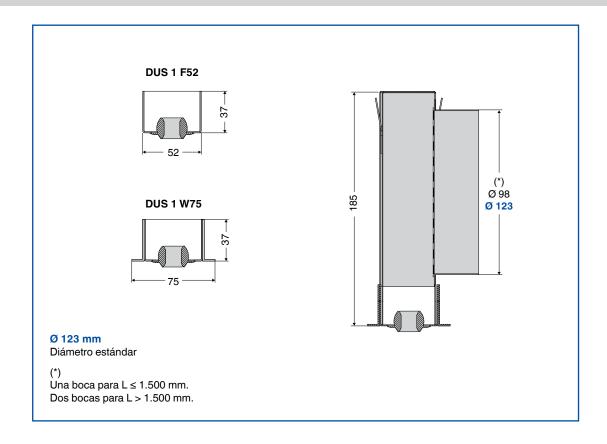
Toberas dispuestas a tresbolillo con marco (FT, WT)

## Opciones de impulsión

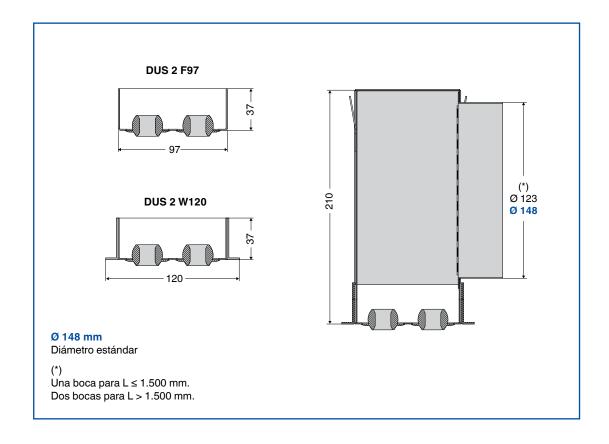


## Descripción

## Texto para especificación

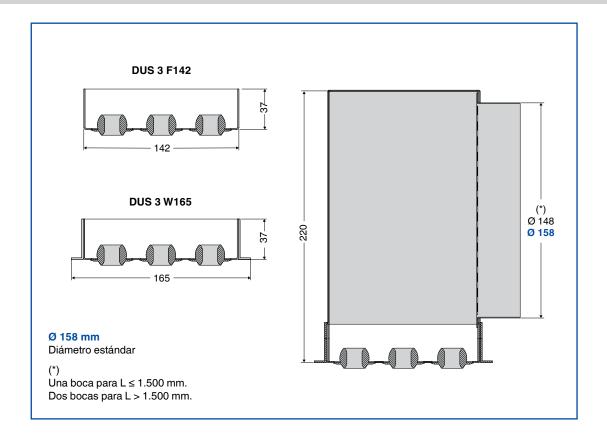

Difusor lineal microtobera para instalación en techos o paredes con consideración estética especial, adecuados para oficinas abiertas, bibliotecas, aulas, laboratorios, halls, etc. La dirección de impulsión de cada microtobera es orientable 360° de manera individual.

## **Materiales**

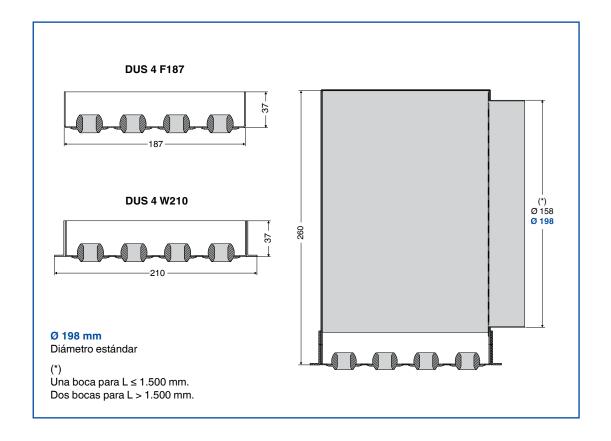

Parte frontal en chapa de acero galvanizado con perfil perimetral de aluminio con posibilidad de acabado pintado en color RAL 9010, 9005 o cualquier color de la carta RAL. Microtoberas en material plástico de color blanco, negro, o bajo demanda gris. Plenum de conexión fabricado en chapa de acero galvanizado - opcionalmente aislado - con posibilidad de chapa perforada fija en la boca de conexión para equilibrado.

## **Dimensiones**

Disposición de toberas en una fila




Disposición de toberas en dos filas



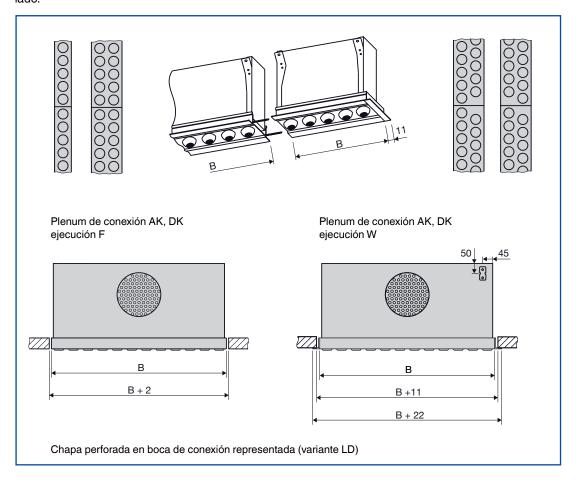

## **Dimensiones**

Disposición de toberas en tres filas

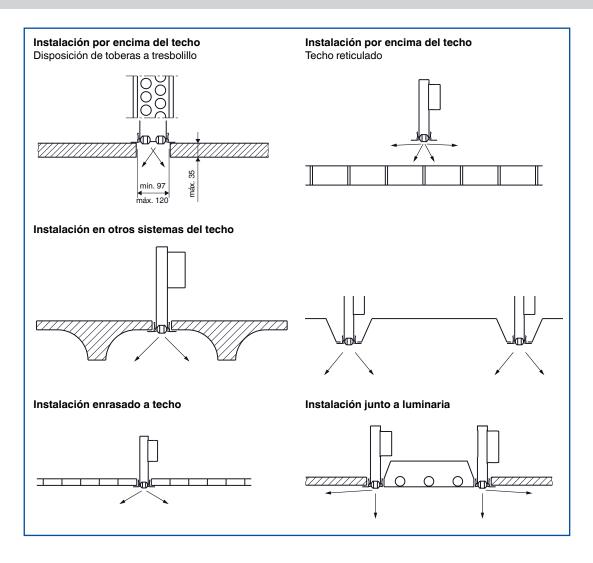


Disposición de toberas en cuatro filas

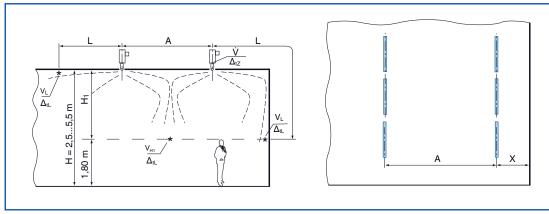



01/2016 - ES **TROX**® TECHNIK S/DUS - 4

## Dimensiones · Ejecuciones


### **Dimensiones**

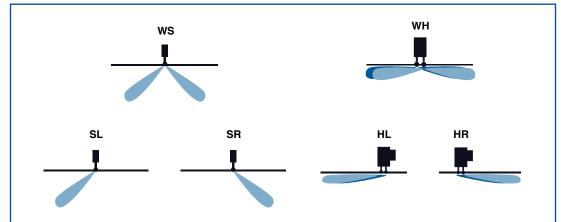
Para longitudes superiores a 2.000 mm el suministro se realizará en tramos intermedios y extremos.


Los tramos se unen entre sí para formar una sola línea continua, con un tramo central sin remates a ambos lados y tramos extremos con remate a un lado. El difusor se puede suministrar con solo parte frontal sin plenum de conexión (A) o con plenum de conexión, con o sin aislamiento interno (ejecución DK o AK).



## Montaje




## **Definiciones**



| L                    | m     | Distancia (X + H₁) de impulsión a la pared                                                      |
|----------------------|-------|-------------------------------------------------------------------------------------------------|
| L <sub>0,3</sub>     | m     | Alcance basado en velocidad final de 0,3 m/s                                                    |
| Ÿ                    | m³/h  | Caudal de aire                                                                                  |
| Α                    | m     | Distancia entre ejes de dos difusores                                                           |
| Χ                    | m     | Distancia entre centro del difusor y pared                                                      |
| Н                    | m     | Altura de sala                                                                                  |
| H <sub>1</sub>       | m     | Distancia entre la techo y la zona de ocupación                                                 |
| $\dot{V}_{H1}$       | m/s   | Velocidad media del flujo de aire entre dos difusores a distancia H, del techo                  |
| $\dot{V}_{L}$        | m/s   | Velocidad media del flujo de aire en la pared a distancia H, del techo                          |
| $\Delta_{tz}$        | K     | Diferencia existente entre la temperatura de sala y la de impulsión                             |
| $\Delta_{\text{tL}}$ | K     | Diferencia existente entre la temperatura de sala y la vena de aire a una distancia determinada |
| $\Delta_{ m pt}$     | Pa    | Pérdida de carga                                                                                |
| L <sub>wA</sub>      | dB(A) | Nivel de potencia sonora en dB(A)                                                               |

01/2016 - ES **TROX**® TECHNIK S/DUS - 6

## **Datos técnicos**



DUS 1

| Imp               | Impulsión WS, SL, SR |      |      |      |      |      |  |  |
|-------------------|----------------------|------|------|------|------|------|--|--|
| Q                 | m³/h                 | 42   | 53   | 67   | 85   | 106  |  |  |
| $\mathbf{L}_{wa}$ | db(A)                | 20   | 25   | 30   | 35   | 40   |  |  |
| ΔΡ                | Pa                   | 12   | 19   | 30   | 48   | 76   |  |  |
| $V_{H1}$          | m/s                  | 0,18 | 0,18 | 0,18 | 0,18 | 0,18 |  |  |
| V <sub>L</sub>    | m/s                  | 0,30 | 0,30 | 0,30 | 0,30 | 0,30 |  |  |
| Н                 | m                    | 3    | 3    | 3    | 3    | 3    |  |  |
| Α                 | m                    | 1,5  | 2,0  | 2,9  | 4,0  | 5,2  |  |  |
| X                 | m                    | 0,1  | 0,4  | 0,8  | 1,1  | 1,4  |  |  |

| Imp            | Impulsión WH, HL, HR |      |      |      |      |      |  |  |
|----------------|----------------------|------|------|------|------|------|--|--|
| Q              | m³/h                 | 35   | 45   | 55   | 65   | 80   |  |  |
| $L_{wa}$       | db(A)                | 20   | 25   | 30   | 35   | 40   |  |  |
| ΔΡ             | Pa                   | 16   | 24   | 35   | 49   | 75   |  |  |
| $V_{H1}$       | m/s                  | 0,18 | 0,18 | 0,18 | 0,18 | 0,18 |  |  |
| V <sub>L</sub> | m/s                  | 0,30 | 0,30 | 0,30 | 0,30 | 0,30 |  |  |
| Н              | m                    | 3    | 3    | 3    | 3    | 3    |  |  |
| Α              | m                    | 1,5  | 1,9  | 2,4  | 3,0  | 3,7  |  |  |
| X              | m                    | 0,3  | 0,5  | 0,6  | 0,8  | 1,1  |  |  |

## DUS 2

| Impulsión WS, SL, SR |                             |                                                    |                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|----------------------|-----------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| m³/h                 | 75                          | 95                                                 | 115                                                                                                                                                                                                                                                     | 150                                                                                                                                                                                                                                                                                                                                            | 170                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| db(A)                | 20                          | 25                                                 | 30                                                                                                                                                                                                                                                      | 35                                                                                                                                                                                                                                                                                                                                             | 40                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| Pa                   | 11                          | 18                                                 | 26                                                                                                                                                                                                                                                      | 43                                                                                                                                                                                                                                                                                                                                             | 58                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| m/s                  | 0,22                        | 0,22                                               | 0,22                                                                                                                                                                                                                                                    | 0,22                                                                                                                                                                                                                                                                                                                                           | 0,22                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| m/s                  | 0,30                        | 0,30                                               | 0,30                                                                                                                                                                                                                                                    | 0,30                                                                                                                                                                                                                                                                                                                                           | 0,30                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| m                    | 3                           | 3                                                  | 3,5                                                                                                                                                                                                                                                     | 3,5                                                                                                                                                                                                                                                                                                                                            | 3,5                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| m                    | 3,0                         | 4,0                                                | 3,9                                                                                                                                                                                                                                                     | 5,2                                                                                                                                                                                                                                                                                                                                            | 6,0                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| m                    | 1,1                         | 1,4                                                | 1,4                                                                                                                                                                                                                                                     | 1,9                                                                                                                                                                                                                                                                                                                                            | 2,1                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                      | m³/h db(A) Pa m/s m/s m/s m | m³/h 75 db(A) 20 Pa 11 m/s 0,22 m/s 0,30 m 3 m 3,0 | m³/h         75         95           db(A)         20         25           Pa         11         18           m/s         0,22         0,22           m/s         0,30         0,30           m         3         3           m         3,0         4,0 | m³/h         75         95         115           db(A)         20         25         30           Pa         11         18         26           m/s         0,22         0,22         0,22         0,22           m/s         0,30         0,30         0,30           m         3         3,5           m         3,0         4,0         3,9 | m³/h         75         95         115         150           db(A)         20         25         30         35           Pa         11         18         26         43           m/s         0,22         0,22         0,22         0,22           m/s         0,30         0,30         0,30         0,30           m         3         3         3,5         3,5           m         3,0         4,0         3,9         5,2 |  |

| ımp               | Impulsion WH, HL, HK |      |      |      |      |      |  |
|-------------------|----------------------|------|------|------|------|------|--|
| Q                 | m³/h                 | 60   | 75   | 90   | 110  | 140  |  |
| $\mathbf{L}_{wa}$ | db(A)                | 20   | 25   | 30   | 35   | 40   |  |
| ΔΡ                | Pa                   | 12   | 18   | 26   | 37   | 55   |  |
| $V_{H1}$          | m/s                  | 0,22 | 0,22 | 0,22 | 0,22 | 0,22 |  |
| V <sub>L</sub>    | m/s                  | 0,30 | 0,30 | 0,30 | 0,30 | 0,30 |  |
| Н                 | m                    | 3    | 3    | 3,5  | 3,5  | 3,5  |  |
| Α                 | m                    | 2,0  | 2,6  | 2,7  | 3,6  | 5,0  |  |
| X                 | m                    | 0,6  | 1,0  | 1,0  | 1,3  | 1,9  |  |

## DUS 3

| Imp               | Impulsión WS, SL, SR |      |      |      |      |      |  |  |
|-------------------|----------------------|------|------|------|------|------|--|--|
| Q                 | m³/h                 | 105  | 130  | 165  | 205  | 260  |  |  |
| $\mathbf{L}_{wa}$ | db(A)                | 20   | 25   | 30   | 35   | 40   |  |  |
| ΔΡ                | Pa                   | 9    | 15   | 23   | 36   | 57   |  |  |
| $V_{H1}$          | m/s                  | 0,22 | 0,22 | 0,22 | 0,24 | 0,30 |  |  |
| V <sub>L</sub>    | m/s                  | 0,30 | 0,30 | 0,30 | 0,30 | 0,30 |  |  |
| Н                 | m                    | 4    | 4    | 5    | 5    | 5,5  |  |  |
| Α                 | m                    | 1,9  | 3,5  | 4,3  | 6,0  | 6,2  |  |  |
| X                 | m                    | 0,5  | 0,9  | 1,2  | 2,0  | 3,1  |  |  |

| Imp             | Impulsión WH, HL, HR |      |      |      |      |      |  |  |
|-----------------|----------------------|------|------|------|------|------|--|--|
| Q               | m³/h                 | 65   | 85   | 105  | 130  | 165  |  |  |
| L <sub>wa</sub> | db(A)                | 20   | 25   | 30   | 35   | 40   |  |  |
| ΔΡ              | Pa                   | 13   | 21   | 32   | 49   | 78   |  |  |
| $V_{H1}$        | m/s                  | 0,22 | 0,22 | 0,22 | 0,22 | 0,22 |  |  |
| $V_L$           | m/s                  | 0,30 | 0,30 | 0,30 | 0,30 | 0,30 |  |  |
| Н               | m                    | 3,5  | 3,5  | 4    | 4    | 4    |  |  |
| Α               | m                    | 2,3  | 2,6  | 3,0  | 3,9  | 6,0  |  |  |
| X               | m                    | 1,5  | 1,0  | 1,1  | 1,4  | 2,0  |  |  |

## DUS 4

| Imp               | Impulsión WS, SL, SR |      |      |      |      |      |  |
|-------------------|----------------------|------|------|------|------|------|--|
| Q                 | m³/h                 | 130  | 165  | 205  | 260  | 325  |  |
| $\mathbf{L}_{wa}$ | db(A)                | 20   | 25   | 30   | 35   | 40   |  |
| ΔΡ                | Pa                   | 9    | 12   | 19   | 31   | 48   |  |
| V <sub>H1</sub>   | m/s                  | 0,22 | 0,22 | 0,22 | 0,24 | 0,26 |  |
| V <sub>L</sub>    | m/s                  | 0,30 | 0,30 | 0,30 | 0,30 | 0,30 |  |
| Н                 | m                    | 3,5  | 4    | 4,5  | 5    | 5,5  |  |
| Α                 | m                    | 4,9  | 5,5  | 6,0  | 6,3  | 6,5  |  |
| X                 | m                    | 1,5  | 1,7  | 1,9  | 2,3  | 2,7  |  |

| Imp             | Impulsión WH, HL, HR |      |      |      |      |      |  |  |
|-----------------|----------------------|------|------|------|------|------|--|--|
| Q               | m³/h                 | 100  | 125  | 150  | 180  | 210  |  |  |
| L <sub>wa</sub> | db(A)                | 20   | 25   | 30   | 35   | 40   |  |  |
| ΔΡ              | Pa                   | 14   | 20   | 28   | 40   | 54   |  |  |
| V <sub>H1</sub> | m/s                  | 0,22 | 0,22 | 0,22 | 0,22 | 0,24 |  |  |
| V <sub>L</sub>  | m/s                  | 0,30 | 0,30 | 0,30 | 0,30 | 0,30 |  |  |
| Н               | m                    | 3,5  | 3,5  | 3,5  | 4    | 4    |  |  |
| Α               | m                    | 2,9  | 3,6  | 4,4  | 5,4  | 6,5  |  |  |
| X               | m                    | 1,0  | 1,3  | 1,6  | 1,9  | 2,4  |  |  |

Cálculos basados en:

tablas)

Caticulus basadus en.

Altura zona de ocupación: 1,8 m  $\Delta_{tx}$  Diferencia de temperatura impulsión sala: -8 K Altura de sala H (ver tablas) Separación entre difusores A (ver tablas) Distancia difusor a pared X (ver tablas)

## Código de pedido

## DUS - 2 - W120 - DK - LD / 1.000 × 148 / A2 / 0 / RAL 9010-GE50 / 0



#### 1 Serie

**DUS** Difusor lineal microtobera

#### 2 Nº Filas

- 1 Una fila
- 2 Dos filas
- 3 Tres filas
- 4 Cuatro filas

## 3 Marco frontal

F Marco plano

W Marco en ángulo

FT Marco plano, a tresbolillo

WT Marco en ángulo, a tresbolillo

## 4 Anchura marco frontal

52 / 75

97 / 120

142 / 165

187 / 210

(1) Ver tabla inferior

## 5 Conexión

A Difusor frontal

AK Con plenum

DK (2) Con plenum aislado

## 6 Opción regulación

0 Sin chapa perforada

LB (3) Con chapa perforada fija en parte frontal

LD (4) Con chapa perforada fija en boca de conexión

### 7 Tamaño

| 500   |   | 98  |  |
|-------|---|-----|--|
| 750   |   | 123 |  |
| 1.000 | × | 148 |  |
| 1.250 |   | 158 |  |
| 1.500 |   | 198 |  |
| 1.750 |   |     |  |
| 2.000 |   |     |  |

(5) Ver tabla inferior en función del nº de filas

### 8 Remate / Marco montaje

**0** (6) Tramo único

E0M (6) Tramo intermedio

COR (6) Tramo lateral derecho

C0L (6) Tramo lateral izquierdo

**A2** (7) Tramo único con fijación oculta

**E2M** <sup>(7)</sup> Tramo intermedio con fijación oculta

C2R (7) Tramo lateral derecho con fijación oculta

C2L (7) Tramo lateral izquierdo con fijación oculta

#### 9 Acabado

0 Pintado al polvo RAL 9010 - GE50

P1 Pintado al polvo en cualquier color carta RAL

## 10 Color toberas

0 Blanco RAL 9010

B Negro RAL 9011

G Gris (bajo petición)

<sup>(7)</sup> Únicamente sin plenum de conexión, ejecución A y marco frontal W. No incluye marco de montaje.

| <sup>(1)</sup> Marco frontal |           |     |  |  |  |  |  |
|------------------------------|-----------|-----|--|--|--|--|--|
| Filas                        | F/FT W/WT |     |  |  |  |  |  |
| 1                            | 52        | 75  |  |  |  |  |  |
| 2                            | 97        | 120 |  |  |  |  |  |
| 3                            | 142       | 165 |  |  |  |  |  |
| 4                            | 187       | 210 |  |  |  |  |  |

| <sup>(5)</sup> Nº de filas |     |     |     |     |
|----------------------------|-----|-----|-----|-----|
| Diámetro                   | 1   | 2   | 3   | 4   |
| 98                         | х   |     |     |     |
| 123                        | х   | х   |     |     |
| 148                        |     | х   | х   |     |
| 158                        |     |     | х   | х   |
| 198                        |     |     |     | х   |
| H Plenum                   | 185 | 210 | 220 | 260 |

Las ejecuciones estándar se muestran sombreadas en la tabla superior Una boca para L  $\leq$  1.500 mm. Dos bocas para L > 1.500 mm.

## Texto para especificación

Difusor lineal microtobera con salidas orientables individualmente con posibilidad de ajuste 360° en todos los lados. Como consecuencia, es posible impulsar el aire con venas de aire independientes o con un flujo de aire compacto.

Posibilidad de instalación en techo o pared con múltiples direcciones de impulsión. Adecuado para su montaje por encima de techos reticulados o en recesos de techo, con toberas dispuestas en disposición paralela o tresbolillo, para sistemas de caudal de aire constante VAC o variable VAV desde 2,5 al 100% de caudal.

## **Materiales**

Parte frontal en chapa de acero galvanizado con perfil perimetral de aluminio con posibilidad de acabado pintado en color RAL 9010, 9005 o cualquier color de la carta RAL. Microtoberas en material plástico de color blanco, negro, o bajo demanda gris. Plenum de conexión fabricado en chapa de acero galvanizado - opcionalmente aislado - con posibilidad de chapa perforada fija en la boca de conexión para equilibrado.

<sup>(2)</sup> Plenum aislado interiormente basado en espuma de polietileno de 5 mm de espesor.

<sup>(3)</sup> Chapa perforada fijada directamente al cuello del difusor, ejecución sin plenum de conexión.

<sup>(4)</sup> Chapa perforada fija en la boca de conexión del plenum (únicamente ejecución AK y DK).

<sup>(6)</sup> Únicamente con plenum de coneción AK y DK.